可分为恒温空气(通常称作恒温箱)、恒温液体(通常称作恒温槽)。由于恒温的液体温度范围不同,又分为低温恒温槽(一般是-40℃~100℃,见下图)、超级恒温槽(一般是室温~300℃,见上图)。又因为100℃以上的液体介质不能用水而用油,通常又称为油槽。恒温槽的同名也有很多,比如恒温水油槽、恒温水浴锅、恒温水箱、恒温循环器、电热恒温水浴等等,它们一般都是通过电阻丝来加热、压缩机制冷,辅助配以PID控制器,恒定一个比较标准的温度,从而达到实验目的。
恒温槽要求对槽内液体的温度精确控温(控温精度是0.1 ℃甚至是0.01℃)。常用的是用电阻丝加热、压缩机制冷的方法,辅以PID微机自整定精确温度控制方式,将恒温槽的温度稳定在所需要的设定温度上。
恒温槽一般都配备有高稳定的铂电阻PRT或其他温度传感器,以分别用来实现对恒温槽的温度控制和自动保护功能。控制器使用特殊的噪声抑制电路,因此能够检测出高稳定性恒温槽所要求的微小的电阻变化。仪器内部使用交流电桥测量温度来减小热电势。定制的、高精度、低温度系数的电阻保证了温度设定点的短期和长期稳定性。
先进的滤波技术克服了电源噪声干扰和杂散的电磁干扰和无线电干扰。采用比例积分控制功能来控制供给恒温槽加热器的功率,精密的工厂调试几乎消除了过冲的影响,使得恒温槽能够在到达温度设定点之后迅速达到其最高的温度稳定性。恒温槽性能的一个关键因素在于我们的热端口技术。它将制冷螺旋管和加热器呈夹层形安装在恒温槽不锈钢筒的侧面,钢筒的底部变成了热交换端口,大部分热量通过这个端口进出恒温槽。钢筒周围良好的绝缘设计最大限度地减少了热量泄露。
目前恒温槽使用的介质大致有酒精、水、防冻液、食用油、硅油、汽缸油等。水是最廉价的的介质,作范围一般在5 ~95℃,但不能覆盖常用的0℃,而较多恒温槽使用防冻液代替水。根据有关研究,冻液与水按1: 1 混合,在- 30℃ 时性能仍正常。槽的表面温场与室温及介质蒸发量有关。根据参考献3,常压下纯防冻液表面张力46. 49 mN/ m(而纯水表面张力0. 728 mN/ m(20℃),防冻液与水合后会大大增加水表面张力,造成分子内聚力增加,从而使得蒸发量小于纯水,故其垂直温场优于纯水。此项性能对于射流结构恒温槽尤其明显。笔者进行相关实验,使用纯水和防冻液(按水和防冻液1: 1 混合)的垂直温场分别15 mK 和32 mK。当恒温介质蒸发量大时,需要遮盖槽面以改善垂直温场。笔者对某射流结构的恒温槽(98 ℃)进行相关实验,结果显示:槽面有覆盖场时,垂直均匀性为12 mK,波动性为8 mK;无覆盖物时,垂直均匀性为28 mK,波动性为12 mK。
由此可见,无覆盖物的影响相当可观。这在某些无法遮盖槽面进行检测工作的情况下需要注意。
在高温时,选择蒸发量小的工作介质可以减小此类影响,低粘度硅油是一种选择。笔者对某厂家恒温槽,使用低粘度硅油作介质实验,结果显示:在-30℃时,垂直物均匀性为4 mK,波动性为12 mK;在100℃,垂直均匀性为2 mK,波动性为5 mK。
食用油也是一种廉价导热介质,在100 ~200 ℃工作范围得到广泛使用。但电热丝通电后温度很高,食用油极易炭化,形成黏性大的颗粒,缠绕在加热丝上,使其导热性变差,降低槽温稳定性。更重要的是降低了加热丝之间绝缘电阻,导致不安全。因此在100 ~300 ℃工作范围建议使用硅油,并周期更换